COMPRESSION OF ICE IN FREEZING OF SUPERCOOLED
WATER IN CAPILLARIES

B. V. Zheleznyi UDC 532.63:532.78

When supercooled water is crystallized in a capillary, the ice is found to be strongly com-
pressed [1]. A theory of maximum possible compression is discussed for a rigid cylindri-
cal capillary and its experimental verification is presented.

A phenomenon of strong compression of ice in rapid nonequilibrium crystallization of supercooled wa-
ter in a capillary is described in [1]. The stresses developed in this case are so large (up to 2 - 108 N/mz),
that they could cause local destruction of almost any structural material. In view of the fact that this pheno-
menon is of definite interest for practical use, a special investigation of this phenomenon was carried out
on a model of cylindrical capillaries.

We consider a dead end cylindrical capillary partially filled with water from the end face (Fig. 1).
Let the length of the column increase on freezing. Due to the effect mentioned above this length is smaller
than the length /;, corresponding to the density of ice at the given temperature and atmospheric pressure.
We shall determine the maximum pressure developing in the column and the minimum possible length I,
We make the following assumptions which correspond fairly closely to the conditions of the experiment; 1)
the capillary is absolutely rigid, 2) { > r. Since the limiting shear strength of ice is small [2], even at
pressures of the order of 107 N/m? the pressure tensor in ice can be regarded close to spherical and the
internal pressure in ice may be considered as a hydrostatic pressure. Inthis case agssumption 2) enables
one to investigate the problem as a linear one, agsuming the pressure in each transverse section of the
column constant.

We choose the origin and the direction of the x axis as indicated in Fig. 1. The element of length Ax
of the column is acted on by the pressure difference mr’Ap balanced by the tangential force 27r7Ax. Pass-
ing on to the limit we can write
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where T is a function of pressure and temperature. The temperature dependence of the force of adhesion
of ice at atmospheric pressure has been studied repeatedly [3, 4]. Ina limited temperature range near
0°C it can be expressed by the formula

T = kity (2)

where k; = const > 0, while for lower temperatures

T T~z const = 7, 3)
7% LRLlls \{:W\/\ \/\x 4 The dependence T(p) for t = const has not been investi-
::;:ﬁa\;:\t;}\;\}}l\*;_\_‘ N 5 ] gated by anyone. But it is just this dependence which is of
DA Rty - N DSOS ] interest to us, since without knowing it the integration of (1)
; ‘;_7 /7 A A and a comparison of the theory with the experiment is not pos-
sible. Since the increase of the pressure on ice takes it closer

to the melting point and is analogous to the increase of tem-
perature, it can be assumed that near the melting pressure
the dependence 7(p) is similarto (2) and canbe writteninthe form

Fig. 1. Diagram illustrating deriva-
tion of formula (1).

Institute of Physical Chemistry of the Academy of Sciences of the USSR, Moscow. Translated from
Inzhenerno-Fizicheskii Zhurnal, Vol. 17, No. 5, pp. 936-943, November, 1969. Original article submitted
November 11, 1968, .

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. Al rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

1438



o

the cage 7= congt, r =2-107° m, t=—10°C:
a) 7, = 3-10% b) 1-107%; ¢) 3-10* N/m’.

3

\ m\\\ Fig. 2. Dependence of the maximum average
\ \ compression on the length of the column for
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/
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c v where k = const, while at pressures far from p¢ (3) is
WWW )}7 valid.
o g The integration of Eq. (1) with the conditionp =0%*
at x =0 gives
2ty
b p= " e {5}
P /’/ 5 for the case (3), and
""""" 17T [ 2k
Pmp\t[l——expk—_—;—x”, {6)
/ ‘ for the case (4).
It is obvious physically that the maximum pressure
° o in the ice in the capillary cannot exceed p¢, since in such
p a transition the pressure is removed by a negative change
K& 2 of volume, If (3) were valid for all p, then according to
\\ (5) the value p; will be attained for :
1434
1> =L 7
\‘.Ks o 27, @
: % 20 -ww I According to formula (6) p; cannot be attained. It is

interesting to determine the conditions, in which it is

generally possible to attain pt in a cylindrical capillary.

According to (1) this is possible in the case where [,
pt

which is equal to r /2 5 dp/7(p), is finite. It is clear

Fig. 3. Experimental temperature depen-
dence (from three experiments) of the length
of ice column in guartz glass capillary (r
=2 %0310 m, 4, =4.4-10"% m): a) wa-
terat p=0, b)ice I at p=p, ) ice Lat p

=0, 0

that if ice has nonzero adhesion strength in the entire

interval 0 = p = py, then p; is attainable; if v(p) — 0 forp — pg, then it is well known from analysis that the
43

integral J dp/T{p} converges only under the condition
0

T(p)
s 00 for p>pe, O A <,
<pt_p)7u ’ t (8)

where ¢ and A are some constants. Condition (8) is the general condition for atfainability of p in a cylin~
driecal capillary.

*Here and below we disregard the atmospheric pressure for brevity, taking it arbitrarily equal to zero.
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!
, Fig. 4. Experimental and theoretical de-
» , / pendence Al/ly () a) r =2 £0.3 -10~%m;
y’ b)r=7.5%0.5-10"% m; 1) from formula
' A — 2 (11), (12); 2) from formula {13); computed
A . " values for r =2 -107% m; T =5 -10° N/mz,
. k=T,/pg, t=—10°C.
o-4a
a-b
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In order to change over from the known distribution p{x) to ! it is necessary to know the dependence
p{p). Inthe literature only the data for p =0 and p; are available [2]. We have assumed that the dependence
p(p) for ice is of the form

p =y + ap—pp®, - )]

where « and J are constant coefficients depending on temperature. In order te find the third point on the
curve p(p), which is necessary for determining « and B, we have asgumed that the linear expansion coeffi-
cient 6 of ice for p=5.9-107 N/m? in the temperature range —5 to —10°C is equal to 4-10~° deg™ (for p
=0 6=5.2-107 deg™! [2]). This assumption makes it possible to descend along an isobar from the point
—~5°C on the melting line of ice to the point on the curve p(p) corresponding to —10°C, Even though it is
highly arbitrary, it cannot introduce a significant error, since the correction introduced for the thermal
expansion of ice is generally small. Under this agsumption the following constants of Eq. (9) are obtained
for —~10°C with p expressed in N/m? and p in kg/m% p, = 918.2, ¢ =2,15:10"7, f=1.275 107

Since the masgs for a given ice column is constant, for a rigid capillary we can write

H
5 pdx = 10, (10)
[
Combining (10), (9), and () for I = [ we have
Al =l == (a—iﬁ—z‘i—) (11)
¢ 0o 3 ro)
For 3 <« o (which happens in our case), considering that Al <« [, instead of (11) we can write
Al ~ (m:o{“ (111)
ly Po”
For the case I > [t instead of (10) we must write
1
) 10|
oo = ((— 1) 0x + § pdx, 10y
[
which together with (9) and (5) leads to
: 2
M _4_ B (12)
. Iy I
where .
2
A=1—20. p_y ( 1__1’0_)_T_olt_( _ 4 Tol-T)_
Px i Ps oy ¢ 3 p r

The complete graph ofthe dependence (Al/Lg)(ly), constructed for three different values of 7, from for-
mulas (11), (12) for the ecase r =2-10"% m, t =-10°C, is shown in Fig. 2. The initial segments of the curves
are almost rectilinear, which corresponds to (111). A discontinuity of the curves occurs at Al/; =1.18
- +107%, which denotes that p; is attained. The subsequent behavior of the curves is hyperbolic,corresponding
to (12).
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Line 1, corresponding to Al/l; = 1—~p,/py, is a common limit of the curves. In practice, however,
even with the fulfilment of (3} the curves of A/{;{l;) cannot go above line 2 corresponding to the density of
supercooled water at —10°C. In general a physical limit of the relative compression of ice {averaged over
the entire volume) in a rigid capillary is the region (shaded in Fig. 2; its lower boundary is undefined) cor-
responding to the density of super cooled water, as without the application of an external active force the
volume of the ice cannot become smaller than that of the liquid from which it is formed. The attainment of
this limit is manifested in the fact that the freezing occurs without a change of the volume, which has been
actually observed by us repeatedly in the experiment in freezing of long columns at T <-30°C.

Combining (10), (9), and (6) we get

ap.r
Loy — o, = 41;; F+2y—3)(z—1), (13)
where
pmexp— 2K O
2 = exp Pt = Bt .

Formula (13) does not give the discontinuity in the dependence Al/;(l)) and %im AlfLy =1—py/pt.

Formulas (11)-(13) have been derived for the column in a dead-end capillary. For 2 column, which is
free both ends and has a length L, the maximum length deficit Al/], will be equal to the value of Al/, for a
column in a dead-end capillary of length L /2.

For an experimental investigation of the dependence of Al/f, on {;, r, t we have used the procedure
described earlier [1]. Certain changes are made in the equipment; a built-in low-inertia electric heater is
used and the upper glass is electrically heated. The capillaries are drawn from prewashed tubes of opti-
cally pure quartz glass and doubly distilled water is used for the experiments. The experiment ig conducted
in the following order: after measuring the length of the column of liquid in the capillary at 0°C it is frozen
(after appropriate supercooling) and then the length of the column of ice is measured as the temperature in-
creases by 3-6°C.

On maintaining the capillary at a constant temperature after the next temperature increase the length
of the ice column, while increasing, approaches the minimum possible value for the given temperature (we
call it extremal) asymptotically, In order to shorten the time required to attain this length, after main-
taining the capillary at a constant temperature for some time the temperature is lowered by stages through
0.3-0.6°C until the length of the ice column practically remains unchanged on maintaining t = constant for 5
min {the reading accuracy of the comparator is =1-10° m). The average temperature between the last
points is taken as corresponding to the given (extremal) length of the column.

The reproducibility of the experimental results for each column can be judged from Fig. 3, on which
the results of different experiments with the same column in the liquid as well as solid state are plotted with
different symbols. Plotted on the same figure are the lines corresponding to relative lengthening (volume
changes) for water and ice at atmospheric pressure and ice I on the melting line; accurate data for the den-
sity of ice I onthe line of transifion into ice Il and II are not known to us and tentatively it can be taken
constant in the range —22 to —40°C.

The change in volume on freezing of one and the same column in different cases is different, but after
a sufficient increase of temperature the lengths of the column measured in different experiments are prac-
tically equal (Fig. 3). The segment of the curve ! -l /Iy (), on which the results of different experiments
coincide, is taken as the segment in which the length of the ice column is extremal.

In order to exclude the effect of small conicity on the computed value of fy the length of the ice column
at 0°C (after maintaining at a constant length) is taken corresponding to the normal density of ice at 0°C and
1 atm. This point together with the length of the column of the liquid at 0°C is used as the datum.

The overall experimental error is estimated as +0.3-06°C in temperature. This accuracy is deter-
mined not by the accuracy of measurement of temperature (+0.2°C), but by the accuracy of agreement of the
determined temperature of the given extremal length of the column. It should be noted that, after the growth
of the column has been stopped by cooling to a certain temperature t{, a heating to a temperature t, >t; is
generally required to resume its growth. In the present work as a rule, we determined the extremal length
at the time when the growth stops, and not when it starts. We have not carried out a special investigation
of this hysteresis.
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Figure 4 presents experimental results of determination of Al /; at —10°C for ice columns of different
lengths in capillaries with r = 2.0 # 0.3 ym and 7.5 0.5 ym. Each point represents the average value for
the column of a given length, obtained in several experiments. The dependence Al/{,(Z,), computed from
formulas (11), (12) (curve 1) and formula (13) (curve (2) for t = ~10°C, r =2 um, 75 =5 103 N/mz, k=m
/ot, is also shown in the same figure. The dashed line represents the limit of formula (13) for ~10°C.

The large spread of the experimental points, and also the smaller difference between the capillaries
r=2 um and 7.5 ym than that expected from formulas (11)-(13), is, in our opinion, mainly due to nonidenti-
cal properties of the surfaces of different capillaries, which in turn is due to different reasons: random
conditions during the drawing of the capillaries, incidence of impurities etc. The adhesion strength has a
strong dependence on the properties of the surface; for example, it can change by an appreciable factor de-
pending on the nature of the surface [4]. Small deviations from eylindricity and variations of the average
radius for different capillaries can also affect the scatter.”

The experimental points for the capillary with r = 2 um lie close to curve 2. This leads to the con~
clusion that the force of adhesion of ice to the walls actually decreases with the increase of the pressure and
the dependence 7(p) is close to (4). Using @) we can estimate the maximum pressure ppx in the column
from formula (6). Thus, for 7, = 107> m we have pyay =4 107 N/m? for the capillary with r = 2 pym (for
the assumed value of k).

The value 7, = 5 -10° N/m? coincides in order of magnitude with the value 7, = 7 -10% N/m? obtained by
Jellinek [4]for the strength. of adhesion of ice to optically polished quartz glass for zero rate of displacement
at —4.5°C. Considering the influence of the surface roughness mentioned above, it can be assertedthatthere
is a satisfactory qualitative agreement between the theory and experiment.

The results of our experiments do not enable us to conclude whether or not condition (8) is satisfied
for temperatures higher than tp; nevertheless their nature is certainly in favor of nonfulfilment of this con-
dition. Not even in a single case did we obtain results definitely indicating a compression exceeding the limit
of formula (13) for t > tp. Clearly, from Fig. 3, for t < tT such compressions were obtained repeatedly.
This indicates that a significant part of the ice in the column exists in the form of ice II or III (compare [1])
and, hence, py is aftained.

NOTATION
r is the radius of the cylindrical capiliary;
t ' is the temperature, °C; _
tp =~22°C is the triple point temperature for water ~ice I—~ice III;

o~

ig the minimum length of column of compressed ice for a given temperature t, having
equilibrium length [jat the same temperature t and at atmospheric pressure arbi-
trarily taken equal to 0;

p ig the average internal pressure inice;

Pt is the pressure of ice I—-water transition (or ice I —iece Illor II transition) at a givent;
T ig the specific adhesion strength of ice to capillary wall;

e ig the density of ice I at p, t;

Jo ig the same as p at p = 0 and t;

Ox ig the density of water (or ice Il or IT) at t and py;

Al=1, —1

Pt is the density of ice I att, py;

Iy is the length of column of water at 0°C.
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